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Abstract

Splatter Image, a recent approach for monocular 3D ob-
ject reconstruction, achieves high efficiency using Gaus-
sian splatting while maintaining state-of-the-art perfor-
mance. In this work, we propose enhancements to this
project through three contributions: (1) incorporating se-
mantic embeddings from pre-trained vision-language mod-
els to provide richer contextual understanding, (2) inte-
grating monocular depth estimation to improve geomet-
ric accuracy, and (3) enhancing loss calculations by us-
ing Total Variation and Edge losses to refine reconstruc-
tion details. Our experiments show that semantic condi-
tioning, particularly using DINO embeddings, significantly
improves view consistency and generalization. Depth in-
formation further enhances reconstruction quality by con-
straining the solution space, but loss modifications do not
bring substantially improvements. Code is available at
https://github.com/splatter-works/splatter-image.

1. Introduction
Single-view 3D reconstruction remains a challenging prob-
lem in computer vision, particularly due to its inherently
ill-posed nature [8, 25]. While recent advances in neu-
ral rendering and 3D representation have shown promis-
ing results [30], achieving both high-quality reconstruction
and real-time performance has remained elusive. The re-
cently proposed Splatter-Image method [22] made signif-
icant strides in this direction by introducing an ultra-fast
approach to single-view 3D reconstruction using Gaussian
splatting [11]. However, despite its impressive speed and
state-of-the-art performance, the method shares certain lim-
itations in reconstruction quality with its NeRF-based pre-
decessors, particularly in achieving high-fidelity object re-
constructions [29].

Building on observations from Tatarchenko et al. [25],
we hypothesize these limitations stem from an undercon-
strained optimization problem. The underlying network
is inherently underparameterized relative to the degrees of
freedom possible in plausible reconstructions, primarily due

to the inherent ambiguity of the task [8]. This results in a
form of representational “superposition” [7], where the net-
work attempts to encode more features than the available
dimensions in its hidden layers permit, leading to interfer-
ence between these representations. To resolve this inter-
ference, the network learns non-linear transformations that
effectively serve as shortcuts.

Rather than truly learning reconstruction, these net-
works often rely on classification and retrieval, as shown
by Tatarchenko et al. [25]. Monocular object reconstruc-
tion methods like Splatter Image tend to prioritize high
PSNR and SSIM over true fidelity, similar to NeRF-based
approaches like PixelNeRF [30], as reported by Watson et
al. [29]. This often results in ”blobby” reconstructions that
average training shapes rather than capturing fine-scale de-
tails. The need for depth conditioning in Flash3D [23] fur-
ther suggests that substantial modifications are required for
scene reconstruction.

To improve Splatter Image while maintaining its state-
of-the-art performance, we explore three complementary
enhancements:

1. Semantic Enhancement: We leverage pre-trained foun-
dation models [16, 18] with strong semantic understand-
ing capabilities to provide additional contextual informa-
tion to the reconstruction process. We hypothesize that
by conditioning the network on semantic embeddings
from pre-trained models, we free the rest of the encoder
to focus on local features rather than redundantly captur-
ing semantic information, thus boosting overall perfor-
mance metrics.

2. Depth Integration: We investigate the integration of
monocular depth estimation [20, 34] as an auxiliary sig-
nal, hypothesizing that explicit depth information can
help constrain the solution space and improve geometric
accuracy. This builds upon previous work demonstrating
the synergistic effects of combining geometric and color
information in 3D reconstruction tasks [5, 32]. Further-
more, the validity of this extension is reinforced by a
similar approach in the follow-up scene reconstruction
work, Flash3D [24].

3. Loss Schedule Optimization: We explore optimized
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loss function schedules to guide training toward detailed
and accurate reconstructions. By combining Total Vari-
ation (TV) loss and edge-preservation loss with the stan-
dard photometric supervision, we prevent convergence
to geometrically inconsistent solutions while maintain-
ing sharp features. Our approach adapts the curriculum
learning benefits demonstrated by Chen et al. [2] within
the end-to-end training paradigm of the original Splatter-
Image framework.
Our experiments demonstrate that these enhancements

show promising improvements in reconstruction quality
while preserving the computational advantages of the origi-
nal Splatter-Image framework. Despite constraints in com-
putational resources, our preliminary results suggest that
depth integration and semantic embeddings are promising
research directions for addressing the inherent ambiguity in
monocular 3D object reconstruction.

2. Related Work
2.1. Semantic Conditioning in 3D Reconstruction

Incorporating semantic cues has been shown to improve 3D
reconstruction and scene understanding. Several methods
use pre-trained vision-language models to enhance seman-
tic consistency and generalization. For example, prior work
employs CLIP-based losses to refine occluded surfaces and
leverage 2D DINO features for automated object discovery
in SfM point clouds [10, 28]. Other approaches transfer
dense 2D CLIP features to 3D scene representations, en-
abling annotation-free segmentation, while vision-language
embeddings have been integrated into Gaussian Splatting to
improve multi-view semantic coherence [13, 33, 36]. Fur-
thermore, aligning 3D features with large-scale language
models has proven to be effective for large-vocabulary seg-
mentation [21]. Inspired by these works, we integrate both
CLIP and DINO features as semantic conditioning signals,
to improve the reconstruction quality to achieve better ge-
ometry and appearance.

2.2. Monocular Depth Estimation

Monocular depth estimation has seen remarkable progress
with deep learning approaches [6, 12], with recent methods
leveraging transformer architectures and multi-scale feature
fusion to achieve state-of-the-art performance [1, 20, 35].
These approaches provide valuable geometric cues for 3D
reconstruction tasks. Several works have integrated monoc-
ular depth as an auxiliary signal for novel view synthe-
sis [14, 32], with MonoSDF [32] incorporating depth priors
to guide SDF optimization and Depth-supervised NeRF [5]
showing significant improvements in novel view synthesis
quality, especially in regions with limited visibility.

Flash3D [24] extends this approach by generating mul-
tiple layers of 3D Gaussians to model both visible surfaces

and occluded regions. Ablation studies show that depth pri-
ors improve reconstruction quality by guiding models to-
ward geometrically consistent solutions. This also enables
better generalization, as it reduces reliance on limited 3D
training data by leveraging pre-trained depth models. In our
work, we treat Splatter Image as an extension of depth pre-
diction networks and integrate explicit depth information as
a conditioning signal to improve geometric accuracy.

2.3. Loss Functions in 3D Reconstruction

The choice of loss functions is crucial for 3D reconstruc-
tion quality. Traditional methods use L1/L2 losses on point
clouds, voxels, or meshes [3, 9, 27]. However, recent works
show that perceptual and adversarial losses on 2D render-
ings can produce more visually appealing results [4, 15].
SPSG [4] introduces a self-supervised framework that infers
unobserved geometry and color in RGB-D scans. Instead
of 3D losses, it applies adversarial and perceptual losses on
2D renderings, reducing artifacts from inconsistent camera
poses. Similarly, PixelNeRF [30] and other NeRF-based
methods optimize photometric quality, sometimes sacrific-
ing geometric accuracy. Recent work explores curriculum
learning in 3D reconstruction. Chen et al. [2] propose a
gradual transition from 3D to 2D supervision, addressing
shape-appearance ambiguity by ensuring the model first
learns object shape before refining appearance details.

3. Method

3.1. Semantic Conditioning

The original method for monocular 3D reconstruction maps
RGB image pixels directly to colored Gaussians, relying
solely on a CNN-based architecture to infer occluded re-
gions. This requires the model to learn view-invariant fea-
tures, which is challenging without extensive training data
and for few-view 3D reconstruction. To address this, we
integrate semantic embeddings from large vision-language
models such as CLIP [19] and DINO [17], which have
been shown to learn robust domain-invariant representa-
tions, even in zero-shot settings.

To incorporate these features, we modify the U-Net
backbone by injecting pre-trained CLIP and DINO embed-
dings into the bottleneck layer. This allows the network to
leverage high-level semantic features alongside spatial and
appearance cues during reconstruction. By adding these
embeddings, the model focuses more on object shape and
structure rather than just pixel details, leading to improved
inference of unseen object parts and more consistent re-
constructions across different viewpoints. As a result, the
model relies less on large labeled datasets and captures
view-invariant features, enhancing monocular 3D object re-
construction.
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Figure 1. Semantic conditioning of image. CLIP and DINO em-
beddings are extracted from the input image and injected into the
bottleneck layer of the U-Net.

3.2. Depth Conditioning

The standard Splatter-Image method operates solely on
RGB images without depth information. Consequently, the
network must implicitly estimate depth when predicting the
placement of colored Gaussians, as illustrated in Figure 2.
Due to the scarcity of 3D training data, this learned shape
estimation is significantly less robust than dedicated depth
estimation methods trained on abundant RGB-D datasets.

To enhance reconstruction robustness and guide the net-
work to leverage domain-invariant features rather than de-
faulting to classification-based retrieval [25], we integrate
depth information in two complementary approaches. First,
we augment the input with an additional channel contain-
ing depth estimates from a pre-trained monocular depth
estimation network. Second, we condition the bottleneck
layer through cross-attention between image features F and
depth features D obtained from the pre-trained monocular
depth prediction network:

Attention(F,D) = softmax
(
FWQ(DWK)T√

dk

)
DWV

where WQ, WK , and WV are learnable convolutional
projection layers that operate on the image features and
depth map, respectively, and dk is the dimension of the key
vectors. This mechanism enables the network to selectively
focus on depth map features during reconstruction and thus
achieve better geometric consistency.

3.3. Loss Modification

In order to enhance the quality of images that the model
outputs, we examined possible extensions in terms of loss
functions. We proposed the addition of Total Variation
loss to improve the smoothness of the image by penaliz-
ing high-frequency variations such as noise or abrupt in-
tensity changes. It is commonly used in image denoising

Figure 2. Illustration of the splatter image method as an exten-
sion of depth estimation networks. Each Gaussian’s location is
defined by a predicted depth d (blue) and a 3D offset (x, y, z)
(red). The Gaussians are projected to the image plane along cam-
era rays (green) and then displaced by the offset, capturing both
observed and unobserved geometry.

tasks [26]. Mathematically, it measures changes in pixel
intensities along horizontal and vertical directions.

Secondly, we added Edge loss, which preserves edges by
penalizing changes in gradient magnitude. It uses a Sobel
operator to highlight intensity variations, aiming to improve
sharpness and structural details. Loss terms were scaled,
with 0.01 found to be optimal for both.

4. Results

4.1. Baseline Performance

We first evaluate the baseline performance of the Splatter
Image model and compare it with PixelNeRF [31]. Since
all modifications were trained with 30k iterations, we also
trained the baseline Splatter Image model for 30k iterations
to ensure consistency in our comparisons while considering
time constraints. Table 1 presents the reconstruction quality
metrics for these models at different training iterations.

Method PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF 21.76 0.78 0.203
Splatter Image (800k) 21.80 0.80 0.150
Splatter Image (30k) 20.95 0.773 0.240

Table 1. Baseline novel-view performance comparison

The results show that the baseline Splatter Image model
performs better than PixelNeRF, achieving state-of-the-art
results for monocular 3D reconstruction. However, training
for longer improves performance, as the model trained for
800k iterations achieves better results than the 30k iteration
setup used in our experiments.
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4.2. Effect of Semantic Embeddings

To evaluate the impact of adding semantic embeddings,
we compare our modified models using CLIP-based and
DINO-based features. Table 2 shows the performance on
both conditioned and novel views.

Method Conditioned Views Novel Views
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DINO-based 32.21 0.961 0.072 21.26 0.786 0.221
CLIP-based 31.72 0.959 0.077 20.91 0.775 0.230

Table 2. Comparison of CLIP-based and DINO-based embeddings
on conditioned and novel views.

The results show that using DINO-based embeddings
improves reconstruction quality, especially for novel views,
while CLIP-based embeddings do not lead to significant
gains. We believe this is due to how these models pro-
cess visual features. CLIP, trained with contrastive learning
on image-caption pairs, creates more global embeddings,
whereas DINO, trained through self-distillation, captures
more local, object-invariant features. These local features
seem more useful for monocular 3D reconstruction as they
help the model better predict unseen object parts. Addi-
tionally, DINO embeddings improve generalization to novel
viewpoints, leading to better view-invariant feature learn-
ing. This reduces reliance on large labeled datasets and re-
sults in more consistent 3D reconstructions.

4.3. Effect of Depth Embeddings

Method Depth Model Conditioned Views Novel Views
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Input
MiDaSSMALL 30.17 0.938 0.111 20.76 0.776 0.230
DPTHYBRID 28.77 0.929 0.126 20.23 0.766 0.250
DPTLARGE 32.36 0.962 0.083 21.12 0.789 0.200

X-Attn MiDaSSMALL 32.77 0.966 0.060 21.11 0.787 0.206
DPTLARGE 32.71 0.966 0.059 21.15 0.788 0.206

Table 3. Comparison of depth integration methods using different
depth models on conditioned and novel views.

We evaluate the impact of depth embeddings by com-
paring different ways of integrating monocular depth infor-
mation into the reconstruction pipeline. Table 3 presents
results for both direct depth input and cross-attention condi-
tioning, using depth predictions from different MiDaS and
DPT models.

The results show that the choice of depth integration
method does not make a big difference, but the quality of the
depth estimates plays a key role. Models using DPTLARGE
consistently achieve better PSNR and SSIM while lower-
ing LPIPS, especially for novel views. This suggests that

higher-quality depth estimates help the model better under-
stand object geometry.

Cross-attention conditioning leads to the best overall per-
formance, with both DPTLARGE and MiDaSSMALL perform-
ing better than the baseline. The improvements are more
noticeable in novel views, showing that strong depth cues
help the model generalize beyond conditioned perspectives.

Our results show that depth information improves recon-
struction quality, but its effectiveness depends on the accu-
racy of depth predictions.

4.4. Effect of Loss Modification

Table 4 compares results achieved by the two scenarios of
baseline with Total Variation loss and Edge loss terms added
to main loss.

Method Conditioned Views Novel Views
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Var loss 32.31 0.960 0.079 21.19 0.773 0.243
Edge loss 13.61 0.743 0.297 12.52 0.683 0.342

Table 4. Addition of Total Variational loss and Edge Loss com-
pared on conditioned and novel views.

Incorporation of Total Variation loss gave the best re-
sults, but only marginally surpassing original work. Usage
of Edge loss resulted in significantly reduced performance.

5. Conclusion

We explored three modifications to the Splatter Image
framework: incorporating semantic embeddings, integrat-
ing depth information, and adjusting the loss function. Our
results show that using DINO embeddings improves gen-
eralization to novel views, while CLIP embeddings do not,
likely because DINO captures more local, object-invariant
features. Adding depth information from MiDaS enhances
reconstruction quality, with better depth estimates leading
to better results. For loss modifications, Total Variation
loss provided a slight improvement, while Edge loss sig-
nificantly reduced performance, suggesting that preserving
edges is not beneficial for Gaussian Splatting.

Future work could explore pre-training strategies to
improve geometric understanding, similar to how pre-
training on mathematical tasks enhances entity recognition
in NLP. Additionally, techniques from generative model-
ing, such as mixture-of-experts architectures and autore-
gressive methods seen in recent image generation mod-
els, could further improve view consistency and general-
ization in monocular 3D reconstruction. Our results show
the benefits of incorporating semantic and depth informa-
tion while suggesting promising directions for future re-
search.
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